
1320: Rules for how electrons fit into atomic orbitals of multi-electron atoms 

(There is a simple rule for how the electrons of an atom in the ground state are arranged. We will 

explain the rule and the reason.) 
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First, we need to explain electron spin, Pauli's (Wolfgang Pauli (1900-1958), Austria) exclusion 

principle, and Hund's rule (details about Hund are unknown) (this explanation will be long). 

If we consider electrons as simple particles in classical mechanics, it seems possible to pack several 

electrons into the same state (for example, one of the atomic orbitals), but in the microscopic world, 

this is not always the case. It is known that there are two types. 

 

[Bose particles and fermions] 

There are two types of particles: one type in which multiple particles can occupy the same state and 

is called a boson particle. Examples of boson particles include photons, pions, and helium atoms. 

The other type is called a fermion, in which more than one of the same particles cannot exist in the 

same state. Bosons and fermions are properties inherent to particles. 

Electrons belong to fermions and are particles that avoid having more than one in the same state 

(we don't know why electrons are fermions). The state here includes not only the spatial state (the 

orbital  that the electron occupies) but also the state of the electron itself. In addition to electrons, 

protons and neutrons are also fermions.． 

 

[Electron spin and spin quantum number] 

It is known that there are two types of states (internal states) of an electron itself. In the classical 

model, this corresponds to the rotation of the electron, so it is called spin. Since the concept is easy 

to grasp, we will explain it using the classical model. 

Let's assume that an electron is a "sphere" for the time being (Figure 1). The magnitude of the 

rotational moment has been measured and it is known to have values of +ℏ/2 and -ℏ/2. One of these 

is called an α spin electron and the other is called a β spin electron. ℏ is the value of Planck's 

constant divided by 2π, and has a quantity of 1.054572×10-34J‧s. The coefficients 1/2 and -1/2 of ℏ 

are called the spin quantum numbers. 
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        Figure 1. Direction of the rotational moment (black arrow) and magnetic moment (white 

arrow) of an electron 

 

[Pauli's principle] 

When including spin states, a single orbital can have up to two fermion electrons with different 

spins. This is called Pauli's exclusion principle. 

Atomic orbitals  have spatial coordinates (x, y, z in Cartesian coordinates; r, θ,  in polar 

coordinates), and spin has spin coordinates that represent the spin state of the electron. Since these 

phenomena are independent, the state of the electron can be expressed as the product of their 

functions. For example, when electron 1 has a  spin and occupies , it is expressed as  (1)  (1), 

and when electron 2 has a  spin and occupies , it is expressed as  (2)  (2).  

 

[Magnetic moment of electron spin] 

As shown in Figure 1, a charged sphere generates magnetic field lines (magnetic momentum) as it 

rotates. Therefore, when a magnetic field is applied, an energy difference occurs. 

In Figure 2, a and b show the orbits as horizontal bars or circles, and the electron spin as up and 

down arrows. The up arrows are usually used to represent α spin electrons. On the other hand, the 

expressions c and d are used when electron spin is not discussed. 
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         Figure 2. How electrons are depicted when occupying orbitals. 

 

[Hund's rule] 

Let's consider how multiple electrons enter degenerate (degeneration: multiple states with the same 

energy level) atomic orbitals. Taking Pauli's principle into account, Figure 3 shows the possible 



combinations for two electrons entering two degenerate orbitals (a，b). 

States A, A' and B, B' are all considered to have equal energy (because electrons are 

indistinguishable). Similarly, the energies of C and D are equal. 

E and F will have equal energy unless a magnetic field is applied to these systems. When there is 

no magnetic field, the question becomes which of states A, C, and E has the lowest energy. 

It is easy to guess that state A has the highest energy. This is because two electrons occupy the 

same orbital, and therefore the probability that electrons 1 and 2 are close to each other is high, 

resulting in a large repulsive energy (positive value) between the electrons. 

Comparing C and E, the only difference between them is the spin of the electrons. The shape and 

size of the orbital are not clearly defined, and strictly speaking, the size of the orbital is infinite. For 

this reason, "a little" of the electrons in orbital a is near orbital b. If an electron in an a orbital and 

an electron in an b orbital are close to each other, the repulsive energy between the electrons will 

naturally be greater, and the energy will be higher accordingly. This possibility is large in state C, 

but small in state E. Because the two electrons have the same spin, Pauli's principle makes it difficult 

for electrons to move from a to b, or from b to a. This reduces the repulsion between electrons, 

and the orbital energy is lower. Therefore, the E electron configuration has the lowest energy. 
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       Figure 3. Possibilities when two electrons enter two degenerate orbitals. 

 

[Total spin quantum number] 

Each electron has a quantum number of +1/2 or -1/2. Consider the sum of the spin quantum 

numbers of the individual electrons. If two electrons both have α spin, then 1/2 + 1/2 = 1. If one is α 

and the other is β spin, then 1/2 - 1/2 = 0. If both have β spin, then -1/2 - 1/2 = -1. The absolute value 

of the sum of the spin quantum numbers of the individual electrons is called the total spin quantum 

number. 

    𝑆 = |𝑠1 + 𝑠2 +⋯+ 𝑠𝑛| ≡ |∑ 𝑠𝑖
𝑛
𝑖=1 |   

 

The way electrons enter degenerate orbitals generally takes an electronic configuration that 

maximizes the total spin quantum number. This is called the Hund rule. 



[Spin multiplicity] 

In 1260, there are 2l+1 magnetic states for azimuthal quantum number l, and these are represented 

by magnetic quantum number m. Similarly, there are 2S+1 magnetic states for total spin quantum 

number S (when a magnetic field is applied, it separates into 2S+1 different energy states). This 

number is called spin multiplicity. The numbers 1, 2, 3, ... are called singlet state, doublet state, 

triplet state, ... respectively. For example, a hydrogen atom has one electron, so S=1/2, and the spin 

multiplicity is 2×(1/2)+1=2, which is a doublet state. In the lowest energy state (called the ground 

state), He has two electrons with reversed spins, so S=-1/2+1/2=0, and 2S+1 is 1, so it is in a singlet 

state. 

 

[How electrons enter atomic orbitals] 

Based on the above rules, the way electrons enter atomic orbitals in the ground state can be 

summarized as follows: (1) electrons occupy orbitals with lower energy levels, (2) up to two 

electrons can enter one atomic orbital, and (3) if there are multiple atomic orbitals with the same 

energy level, they will be entered so that the total spin quantum number is maximized. Following 

these rules, the electron configurations of H to Na in the periodic table are shown in Figure 4. 

 

 

    Figure 4. Electron configuration of a multi-electron atom. 

 

As shown in the diagram above, when there is one electron in the 1s orbital it is represented by the 

symbol 1s1, and when there are two electrons it is represented by the symbol 1s2. The Li atom is 

1s22s1. 
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