3850. 水素化金属 (メタルヒドリド) 還元剤

LiH, NaH は強力な還元剤ですが同時に強力な塩基でもあります. 一般に, 還元反応より酸・塩基反応が優先します (反応速度が速い). 一方, BH_3 , AlH_3 は強力な還元作用有しますが, 空の 2p または 3p 軌道があるため, 二重結合 C=C の π 電子が空軌道へ流れ付加体 (錯体) となります.

LiH と AlH₃ の錯体である LiAlH₄, および NaH と BH₃ の錯体である NaBH₄ は,酸-塩基 反応および付加反応が抑制され還元作用のみが発揮されます.これらの錯体はもっとも頻繁に用いられる還元剤です.これらは,<u>LiAlH₄ は還元力が強く,NaBH₄ の還元力は弱い(弱すぎる)という特徴があります</u>.

 $LiAlH_4$ の還元力と $NaBH_4$ のそれとの間の還元力の差は Al (1.5) と B (2.0) の電気陰性度の差に由来します。Al に H より電子陰性度大きな原子を結合させることで $LiAlH_4$ の還元力を弱めることができます。

LiAlH₄のHの代わりアルキル基で置き換えた試薬がDIBAL-H (diisobutylalminium hydride) およびLiAlH₄の3つのHをter-butoxy基で置き換えた還元剤が開発されています.

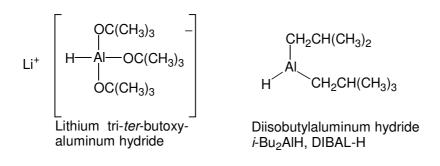


図 1. LiAlH₄の還元力を弱めた還元剤.